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PAPER NO. 36 ' 'y

A MATHEMATICAL MODEL FOR THE BEHAVIOR OF THE BRAIN
WHEN THE HUMAN HEAD IS SUBJECTED TO IMPULSIVE LOADS

by
Al1 E. Engin, Ph.D.
and
Verne L. Roberts, Ph.D.
The University of Michigan

ABSTRACT

The subject matter of this paper is concerned with the theoretical deter-
mination of the behavior of the brain when the human head is subjected to
external impulsive loads. The mathematical analysis is made for the axisymmetric
response of an inviscid compressible fluid loaded impulsively by its elastic
spherical shell container. The motion of the fluid is assumed to be gove;ned
by the linear wave equation. The spherical shell equations include both '
membrane and bending effects in axisymmetric torsionless motion. In the
analysis first the solution for an initial value problem is obrained; later |
the transient response of the fluid for an arbitrary velocity input of the shell
is constructed by means of convolution integral. For the numerical results, a
characteristic time is defined and the excess pressure distribution in the
fluid is evaluated for various deceleration times comparable with this
characteristic time.. A description of some of the salient features of the excess
pressure distribution‘is also given in view of the elastic and rigid shell
boundary of the fluid. Since the problem is considered from a theoretical
point of view to determine some of the causes of the brain damage when the human
head is subjected to impulsive loads, in the numerical computations the data

is chcsen to be suitable to the physical properties of brain and skull.
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LIST OF SYMBOLS

Young's modulus

Legendre polynomials of the first kind

Associated Legendre polynomials of the first kind and first order

Specd of the fluid-filled shell along an axis passing through the
poles

Velocity potential fcr the fluid

Nondimensional velocity poteintial for the fluid, lb/acs

Nondimensional frequency, wa/c

Radius of spherical shell

Coefficients of Legendre polynomial expansion of g

Cocfficients of Legendre polynomial expansion of y

Coefficients of velocity potential

Compressional wave speed in the fluid

Appairent wave speed in the shell, [E/;os(l--vz)]‘/2

Shell-fluid parameter, poa/psh

Shell thickness

Spherical Bessel function, (w/2z)1/23(z)
n+1/2

Wave number, w/c

Excess pressure

Nondimensional excess pressure, p/pocg
Spherical coordinates

Nondimensional radius, r/a

Speed ratio, c/cs
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Time

n|§

Characteristic time,

Deceleration time

Meridional displacement of the shell mid-surface with respect to
geometric center of the shell

Radial displacement cf the sh211 mid-surface with respect to geometric
center of the sheii l

Thickness paramcter, h2/1Za2

Nondimensioial radial displacement, v/a

Nondimensional meridional displacement, u/a

n{n+1)

Poisson's ratio

Mass density of fluid and shell respectively

Nondimensional time, c t/a

Nondimensional characteristic time, 2/s

Nondimensional deceleration time, csto/a

Angular frequency
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INTRODUCTION

This investigation aims at the following two considerations. First, the
subject matter is a point of interest in theoretical mechanics due to the fluid-
solid interaction nature of the probiem. Second, from the application point of
view, the impulsive response of the fluid when the enclosing elastic shell is
suddenly subjected to a change in its velocity can be taken as a simple but im-
proved theoretical model to determine the formation of brain damage when no local
contacts are made on the human head.

The previous studies in the area have been either investigations involving
shells in contact externally and/or internally with fluids, especially by researchers
in the field of acoustics, or analyses of various head injury models. While studies
on these two categories are numerous, only a few representative ones will be men-
tioned here. Junger! investigated the effect of fluid on the natural frequencies
of cylindrical and spherical shells freely suspended in a compressible fluid medium.
Free and forced oscillations of infinitely long cylindrical shells surrounded by
water were studied by Greenspon? who treated unpressurized shells by exact elasticity
theory and cylindrical shells with fluid by approximate shell theory. Utilizing
1inear shell theory, which includes both membrane and bending effects, Engin and Liu’re-
cently obtained the frequency equation and corresponding frequency spectrum of
fluid-filled spherical shells for the axisymmetric and nontorsional motion.

In the 1iterature, the rigorous mathematical treatments of the physical theory
of the formation of brain damage was first introduced by Anzelius" and Giittingers
with their analyses of the impulsive response of an inviscid fluid contained in a
rigid closed spherical shell (or container). Their formulations are essentially

identical and involve an axisymmetric solution of the acoustic wave equation in
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spherical coordinates. Jn the papers of both authors the eigen values of the
probiem are determined by requiring the radial component of the fluid velocity

to vanish at the interior surface of the rigid spherical shell surrounding the
fluid. Hayashi® treated a one-dimensfonal version of the Anzelius-Glittinger
model. His model cousists of a rigid and massless vessel containing inviscid
fluid. The vessel, which is attached to a linear spring, is subjected tc impacts
with a statfonary wall. Approximate solutions were obtained vor the limiting
cases of scit and very hard impacts. Although this simple model has the advan-
tage of being easy to interpret, it has the similar shortcomings of the Anzelius-
Guttinger model, i.e. (a) due to rigidity. and geometric assumption therc is no
way to determine the possible locations of skull fracture and (b) the effects of
skull deformation on the intracranial pressure distribution can not be determnined.
Recently, Engin’ removed some major restrictions of previous head injury models
by obtaining analytical and numerical solutions for the dynamic response of a fluid-
filled elastic spherical shell. The loading pattern for his model is taken to be

local, radial, axisymmetric and impulsive. Since the load is applied as a force

locally on one of the poles of the shell, the combined shell theory which inciudes
both membrane and bending effects of the shell has been used for the proper de-
scription of the wave propagation on the shell. The analysis utilizes Laplace
transform technique in obtaining the transient response of the system. The con-
clusions of Engin's paper include the possible locations of brain damage and skull
injury on the basis of the numerical computaticns. As a problem in mechanics,

the present investigation is a generalization of the results of Anzelius and
Giittinger by removing the restriction of rigidity of the shell surrounding the
fluid. Our model consists of an elastic spherical shell filled with inviscid com-
pressible fluid. The shell material and fluid arc considered to be homogenzous and

isotropic. In the analysis, the fluid-filled shell will be considered to have a
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constant translational velocity for t<o with respect to an inertial coordinate
system. At t=o the shell is broucht to a sudden stop, i.e. the fluid occupying
the interfor space of the shell is subjected to a global axisymmetric impulse
on its boundary. The determination of the pressure distribution in the fluid
for this kind of'impulse will help to explain quantitatively the location and
the magnitude of brain damage under the conditions in which the application of

local forces on the skull is avcided.
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The governing differential equations of motion for a fluid-filled spherical

I. EQUATIONS OF MOTION AND THEIR SOLUTIONS

shell were previously obtained in reference 3 by means of Hamilton's Principle.
These three partial differential equations, which are coupled in terms of the
mweridional and radial displacements, u, w of the shell mid-surface and velocity

potential, ¢, of the fluid, are given below in nondimensional form:

2 3 2
az[—:—’}’ + cot¢ -:-4.’- - (vtcot2¢)y - : s cote —i + (vicot?y) -g—i—]-r :—#’ + coté -g—‘g

52

2
~ (vécot2g)y + (1+v) 3% 52" 0 M

3 2 3
u"’[:—;g- + 2cotd g—& - (14+vtcot2y) -g% + (cot2¢-vi2)ycoty - :4, - 2cot¢ ";‘S'

) 2
+ (1+vtcot2y) ~§- - (2-vtcot2¢)cot ] (l+v)( + ycot¢+2r) - :T
- f :%(Lm)_ .0, (2)
and

1 3 .2 ao. 3%, l 3%, _
r.Zor, (rf ) rzsinq» 3¢ (sing Y] ) " § 37z =0 (3)
where
c 1/2
=TTt [E/"s“"’z)] s "o N T b ":_c—’
s s

.' Pod
Fo o .

Since the deformation of a given shell is usually anaiyzed in terms of the de-
formation of its mid-surface, Eqs. 1 and 2 describe the motion of an imaginary
boundary of the fluid which is half the shell thickness away from the physical
boundary. These sh211 equations include both membrane and bending effects and

they are given for an axisymmetric torsionless motion. Equation 3 is the linear
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wave equation describing the motion of small oscillations of inviscid and ir-
rotational fluid.
Consider the following series expansions for the nondimensional radial and

tangential displacements of the shell midsurface:

tl4sr) =n§° a,(x) P_(cose), (42)
and
#ort) = T byle) Pafeoss), (4b)

where Pn(cos¢) are Legendre polynomials of the first kind and Pﬁ(cos¢) are asso-
ciated Legendre polynomials of the first order, first kind. Since the second
solutions of the Legendre equations are singular at the poles they are not in-
cluded in the expansions of ¢ and y. The requirement of boundedness of solutions

and the linearity of Eq. 3 lead to its formal solution:

lrisber) = T cgfe) d(kar,) Py(eose), (5)

where jn(kar.) is spherical Bessel function, k=w/c is the wave number and w is
the circular frequency.
The boundary condition between the fluid and shell can be stated as tha

continuity of normal velocities for all ¢ and x; that is,

ar(eat) _ 23¢.(1,4,1) (6)

91 or,
Substitution of Eqs. 4a and 5 into Eq. 6 yields the following relationship
betveen an(r) and cn(r) for each n:

da_(x)
1
cyl1) = Ky (RaT T (7)
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10
It can be shown that substitution of Egs. 4a, 4b, and Eq. 5, together with Eq. 7
into Eqs. 1 and 2, and the repeated utilization of the differential equations
satisfied by P, and Pﬁ yields the following system of equations for the deter-

mination of an(r) and bn(r):

for n=0:
2 d?a («
['l +f ig:(,(;)] a“:p( r) + 2(14v) ao('r) = 0, (8)
forn21:
d2b_(+)
g+ [v-02(1-v-2 )13 (1) = (1-v-2,)(1+a2)b, (1) = O, (9)

3,(a)) ¢2a (x) |
[l + fnjz(n)] dTZ" - {(1+v)xn + o2 [Aﬁ-xn(1-v)]} b,(7) + {2(1+V)

-+ az[kﬁ-ln(]w)]} an('r) =0 (10)
where n=ka=%9-and'xn=n(n+l). In reference 3 a description of some of the salient

features of the frequency spectrum of a fluid-filled spherical shell is given in
detail. There it was also shown that for each mode number, n, the infinite num-
ber of frequencies (or characteristic roots) exists. Thus, the solutions of Egs.

8, 9 and 10 can be written in the following form:

ao(-r) =m-2-:o Aom sin(nom Sr+aom). (1)

a (1) =n§° A i, stta ) (12)
and

bn('r) = mZo &m I\nm S‘in(f?nm S':"'unm) (13)
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where Aou’ Amn’ qm‘and Gom 7€ arbitrary constants; a . and 2, are the roots

of the following frequency equations respectively

) ]

. +f 5;%%;;- s202 - 2(1+v) = 0 for n=o, (14)
and

} +f agﬁég;l shql 4'{[1+f5§£§§;ﬂ(1-v-kh)(1+az)-2(1+v)-u2[kﬁ-kn(1-v)i}Szﬂz

- (m){ 2(1-vea, ) (14a2) + An[l+v—a2(1-v-kn)]} -a2(2-3 )2 (1-v)] = 0

fornz1. (15)
One of the steps in derivation of Eq. 15 also yields the following expression

for Qun’
o JHv=a2(1-v-2p) n=1,2,3,...
G s7aZ F(T-v-2 ) (T%a7) m=0,1,2,...

In view of Eqs. 7, 11 and 12 the nondimensional velocity potential, ¢, now can

be written as
v jn(nnmr')
i(ri,6,1) =n§° mzo A S 3;(5;;7—— cos(nnm s:+anm) Pn(cos¢) (16)

Next, let us consider the following physical situation in which a fluid-
filled shell is travelling with a constant speed, V, along an axis passing throush
the poles. Assume at t=o0 it is brought to a sudden stop. Incidentally, this
situation can be visualized as the motion of the fluid-filled shell in a force
field which can only affect the shell material; the parameters of the force field
can be adjusted in such a manner that the desired motion of the shell is obtained.
Due to inertia of the fluid particles, at time t=o they will experience a velocity
relative to the coordinate system whose crigin is located at the geometric center
of the shell. In other words, when the shell surrounding the fluid is brought to
a sudden stop at t=o, the fluid particles occupying the interior space of the
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shell are unaware that the motion of shell is arrested. Assuming that the initial
excess pressure distribution in the fluid 1s zero we can now write the following
initial conditions on the nondimensional velocity potential ¢,

0 (rist, = o)-o J!— r, CoS¢
s

(17)

and .

%o

=0
From the second initial condition, i.e. oa-o. we get o =o. The first initial
condition is used to obtain the coefficients A . In order to do this let us
first write Eq. 16 in the terminology of efgenfunctions by defining e =
Jp{@par )P, (cose):
: - - cos(n st)
oo -nzo mzo Aom € 3n( nm’ s

Let e =§ (nnlr.)P (cos¢) be the conjugate-eigenfunction for e i having applied

the first of the initial conditions on ¢: in Eq. 18 and multiplying both sides of
the resulting equation by Ehm and integrating it over the fluid volume we get

Ann s o nm ) | (19)

To evaluate the integral on the numerator of Anm ve write cos¢ as P,(cos¢) and
see that in view of orthogonality of Legendre polynomials in the interval [-1,1]
J. 8 € dv =g f7 2" %—(ar.)’jn(n 1r,)P.(cos¢)P (cos¢) singd¢dedr, = 0
. ooo0 s n n
fornf 1. (20)
Expressing the spherical Dessel functions in terms of fractional order Bessel

functions and periorming tnc integration in Eq. 20 yields
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P9 T 4+ L B0, (0 @)

where 2, = Q.. For the cvaluation of the integral on the denominator of Anm vie

use the following properties of Bessel functions and Legendre polynomials:
a2 [‘]rzﬁi(knma) - Jn-i(knma)‘]mg(knma)] T=m
a :
s Jn+§(knlr) Jn+i(knmr)rdr =
0 s 1¥m
and from the definition of the norm of Pn(cos¢)
T o2 : . 2 _
" Py(cose) sing dy = 5ro;
Thus, the value of the integral under consideration becomes
© w [Jz+1(nnm) ) 1(nnm) J 3(9nm)J
) ) meve e dv=
v neo meo dn(@) nm Snm 2n+1 alf? [ n+‘(9nm) n*g(“nm)] (22)

From Eq. 20 vwe see that Anm=0 except n=1. Let AmsA'm. using Eq: 21 and.22 in
Eq. 19 we obtain the final expression for I\m:

2V d5(a, )[ 5(s,) - Isla,)

Ay = T ) - J%(n LHCe (23)
where a, are the roots of the frequency equation ior n=l. Subsfitution of Eq.
23 into Eq. 18 after some simplification gives the expression for the nondimen-
sional velocity potential for the fluid
. Js(n ) Ja(n r,,) cos(g st)
0.(1‘,;%1) = i—:cowmzo m[JBZ(Q ) - JIW )JS(S’ )J'. Tz (23)

The nondimcnsional excess pressure, p,, is equal to - grﬂ and it is obtainable

directly from Eq. 24.

888




4

It is interesting to note that the appropriate limiting case of Eq. 24 agrees
with the result obtained by GiittingerS. Vhen we write Eq. 24 in dimensional form,
Cgo the wave spccd on the shell, disappears from the expression of velocity poten-
tial. In the case in vhich the shell surrounding the fluid becomes rigid, s-+o,
and Eqs. 14 and 15 degenerate to Jé(n)=o. vhich {1s easily shown to be the frequency
equation of an ideal fluid contained in a rigid spherical shell. Hhen the shell
hecomes rigid azs in Eq. 24 are taken to be the roots of J,(n)=o0 which can also
be written in terms of fractional order Bessel functions as 290;'(0)-Jg(n)=o,

This last equation was used by Guttinger to obtain the necessary natural fre-
quencies of the fluid for the determination of the fmpulsive response.

If desired, the transient response of the fluid for an arbitrary velocity
input, V(t), of the surrounding shell can be examined by means of Convolution
integral. By the principle of superposition, it can be shown that velocity po-

tential ¢,, to an-arbitrary shell excitation V() can be expressed as
- []
o, (r,sd,1) = !691 o, (ry o,1) + {‘ Vo) o,(r, ¢,1-£)de, for 0. (25)

where ¢,(r,,¢,7) is given in Eq. 24 and V is the constant speed before the sudden

stop of the spherical shell.
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11. NUMERICAL RFSULTS AND DISCUSSION

For the determination of the numerical values of the excess pressure, p,,
generated in the fluid we use a different form of Eq. 24 in which the Bessel
functions of fractional order arc expressed in terms of trigonomeiric functions.

The expression, thus obtained for p, s

Ve » [3(sin?m-cosnm)-nmsinnm][sin(nmr.)-nmr,cos(nmr,)]sin(nmsT)
AU ¢ 2“4 L e 7 ¥ (1-30 )sTata + asing cosq ]
(26)

Here the dimensfonal excess pressure, p, can be obtainad from p-p,p.csz. At
r,=0 the equation for p, is indeterminate; however, application of L'Hospital
rule to Eq. 26 once yields p,(0,¢,7)=0. That s, in the equitorial plane which
is perpendicular to the direction of impulse, pressure is zero at all times.
Since the problem was considered to serve as a theoretical model to determine
the formation of brain damage, the numerical values are obtained from the fol-

lowing data suitable to the physical properties of brain and skull:

pg = 0.0772 1bm/in3

E =2 x 106 1bf/in?

v =025

a =31n (27)
0.15 in

0.0362 1bm/in3

57100 in/scc.

©° -
n ”

(2]
n

The assuriptions Teading to the ahbove data are discussed in detail in references

7 and 8.
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Since the sudden stop of a fluid-filled shell demands an infinite deceler-

ation, it is more reasonable to consider the case where stopping occurs during

a finite time t (Hondimensfonal value, -952). More specifically let us as-

()
sume that the shell has the following velocity form

v (t<o)
Y(t) = Vt/t, (ostst)) (28)
0 (t2t)) ,

f.e. it is brought to 2 stop with a constant deceleration during time to For
the numerical results the magnitude of V is taken to be 528 in/sec. As

regard the response of the system, the above situation is {identical to that

in vhich the shell and 1ts content are set into motion from rest with the same
magni tude of acceleration. Thus, in view of Eq. 25 the expression for the

excess pressure can be obtained directly from. Eq. 26

m=°

N st T
+ ufr-r)) sin T2 sinnms(r-—%)}

where

C0Sé,

9m(°"'u )& "4‘:': [3(51nnm—cosnm)-nmsmnm][51"(ﬂmr. )'nmr.COS(ﬂmr. )]

—1; r ’nn;[?z;;’f { l-3nm')?1 7 +a s nnmcosan

and u(1), u(r-ro) are the unit step functions. He note that the 1imiting case of
Eq. 29 in fact gives Eq. 26 vhen 0 - The series in Eq. 29 exhibits much

better convergence than the on2 gﬁ/cn in Eq. 26€.
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Let us define a characteristic time, tc(or " §§9 » 3.615 for the data
given in Eq. 27) to be the time required for a wave in the fluid to travel from
one pole to the other. In all the figures the deceleration duration 1s considered
with respect to this characteristic time. Figure 1 shows the plot of the excess
pressure at the pole (¢=0) for two different values of deceleration duration. The
reduction of the pressure with doubling ¢f the deccleration time is readily apparent.
Figures 2 through 8 present the excess pressure distribution along the polar axis
for varfous values of nondimensional radius r, and nondimensional time t. From
Eq. 29 we see that p,(-r, ,¢,7) = -p (r .3,7); hence, the points located symmetri-
cally with respect to the equitorial plane vhich is perpendicular to the polar
axis always experience the excess pressure of opposite sign. That is, for such
a pair of points 1f one 1s in a state of compression, the other one will be in
a state of dilatation. From Figs. 2 through 8 one can find the magnitude of the
excess pressure along any ray extending from the origin by simply multiplying the
value with cos¢. In other words, the waves gencrated on the inncr surface of the
shell have amplitude factors which attenuate according to the polar angle ¢. When
the deceleration time To<<Tcs sharp extremes in the excess pressure form for v>1,.
This fact is illustrated in Fig. 2. A further {interesting observation is the
comparison of the pressure distributfions in the fluid contained in the rigid and
the elastic shells. In Figs. 3 through 8 pressure distributions are plotted for
both elastic and rigid cases. From these plots we see that the amplitude of the
excess pressure wave in the fluid contained in an elastic shell is considerably
less than that of the excess pressurc vave in the fluid contained in a rigid shell.

Local variations of the wave form in the clastic case are also noticeable. When

we compare Figs. 5 and 7 and Figs. 6 and 8 ve notice that the vave forms are
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are much less than those corresponding to a small value of L (compare the scales

essentially the same and the amplitudes of pressure for the large value of 14

in the figures). In Figs. 7 and 8 71,2100t corresponds to 502 in/sec2 (or 130 g's
for a deceleration time of 0.0105 scc.) In this case the maximum negative excess
pressure -generated in the fluid is ahout 48 psi.

In conclusion, if we seek the brain damage to occur at the points of rare-
faction of the fluid, ve find this situation arises fn maximuir magnitudes at the
poles and these locations are quite significant for the analytical confirmation

of the cavitation theory of brain damage.
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Fig. 5 MNondimensional excess pressure, p,, vs. nondimensional time, t,-and

nondimensional radius, r,; ¢=0 and v =2v,, (Rigid shell boundary).
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Fig. 7 Nondimensfonal excess pressure, p . vs. nondimensional time, r, and

nondimensional radius, r,; ¢=0 and ro-'loo_rc, (Rigid shell boundary).
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